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Review

In 1980, Congress passed the Comprehensive
Environmental Response, Compensation, and
Liability Act (1980; more commonly known
as Superfund) that was designed to deal with
abandoned and uncontrolled waste sites. Two
classes of presumptive remedies exist to deal
with Superfund sites: containment and treat-
ment. Containment simply prevents the
spread of contaminants to the soil, air, and
water, whereas treatment employs technologies
to rid the area of contaminants. The treatment
regimens for soils and solid wastes most often
employed are some form of combustion or
thermal treatment, including a) incineration,
which uses high temperatures to degrade cont-
aminants; b) on-site thermal destruction,
which is, in effect, a low-grade incineration
process; and c) thermal desorption, in which
toxic chemicals are first desorbed from the
medium, collected, transported off-site, and
then usually incinerated.

Combustion and thermal processes are
dominant sources of air pollution. Although
much attention is still paid to their contribu-
tion to priority air pollutants [i.e. ozone,
volatile organic compounds (VOCs), and
nitrogen oxides (NOx)], they also produce
chronically toxic products of incomplete com-
bustion (PICs). The greenhouse gas carbon
dioxide is a product of complete combustion of
carbon, and the ozone promoter NOx is a
product of complete combustion of nitrogen.
However, chronically toxic organic pollutants,

such as benzene, polychlorinated dibenzo-p-
dioxins and dibenzofurans (PCDD/Fs), acry-
lonitrile, and methyl bromide, are products of
incomplete combustion of carbon, carbon and
chlorine, carbon and nitrogen, and carbon and
bromine compounds, respectively. Although
these toxic combustion by-products are formed
in many types of combustion and thermal
processes, they have historically been of particu-
lar concern for incineration of hazardous wastes
and soils/sediments contaminated with haz-
ardous wastes. For this reason, on-site incinera-
tion, defined as direct contact of the waste
material with a flame, has come into disfavor.
Instead, thermal destruction or desorption (in
which the waste does not directly contact the
flame) has been frequently substituted.
Unfortunately, low- or moderate-temperature
treatment has the potential to form more toxic
by-products than does incineration.

Although some of these pollutants are
emitted in the gas phase of combustion, they
are frequently associated with fine and ultra-
fine particulate matter (PM). Fine particles,
PM2.5, are particles having an aerodynamic
diameter of < 2.5 µm, and ultrafine particles,
PM0.1, have an aerodynamic diameter of
< 0.1 µm. Because so many pollutants are
associated with fine PM and because fine PM
has been strongly implicated in pulmonary
and cardiovascular disease, much research has
focused on its health impacts. Multiple
theories have been proposed for the observed

health impacts of fine and ultrafine PM; how-
ever, increasing evidence shows induction of
oxidative stress as the progenitor of many of
the observed illnesses. Polyclycic aromatic
hydrocarbons (PAHs); chlorinated hydrocar-
bons (CHCs), including PCDD/Fs; bromi-
nated hydrocarbons (BHCs), including
mixed brominated/chlorinated dioxins and
furans (PXDD/Fs); toxic and redox-active
metals; and persistent redox-active free radi-
cals have been found to be associated with
combustion-generated PM and have been
suggested as responsible agents for one or
more observed health impacts.

In this article, we discuss the origin and
emissions of toxic combustion by-products
and their potential health impacts when asso-
ciated with combustion-generated fine and
ultrafine PM.

The Nature and Origin of
Emissions of Toxic
Combustion By-products
The nature of combustion by-products is
determined by the chemicals that are treated
and the conditions under which they react.
Although incinerators, catalytic oxidizers, ther-
mal desorbers, and accidental fire scenarios are
quite different from an engineering perspec-
tive, the underlying reaction chemistries that
form pollutants are closely related.

Origin of emissions: a chemical reaction
zone theory. Toxic combustion by-products
include two broad categories of organic pollu-
tants that are defined under the Resource
Conservation and Recovery Act of 1976.
They are residual, undestroyed emissions of
so-called principal organic hazardous con-
stituents (POHCs) that are contained in the
feed-stock and PICs that are formed during
the thermal treatment. In addition, toxic
metals may be vaporized and emitted; how-
ever, they more frequently react with oxygen
or chlorine, resulting in a change in chemical
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form and oxidation state. Few, if any, organic
components of the feed-stock survive direct
contact with the flame, and other than soot,
only minimal organic by-products are formed
(Dellinger and Taylor 1998; Oppelt 1986).
Thus, the vast majority of the observed pollu-
tants in the effluent must be originating from
chemistry occurring outside the flame. In fact,
most of the pollutants are probably formed in
the high-temperature, postflame zone or at
even lower downstream temperatures as a
result of surface-mediated reactions. In the
most general sense, the mechanisms of pollu-
tant formation and destruction are expected
to be relatively consistent within a zone. This
“zone model” allows for classification of the
reactions occurring within a given zone
(Dellinger and Taylor 1998) (Figure 1).

Zone 1, the preflame, fuel zone. This
zone is characterized by a wide range of tem-
peratures (from near ambient to 1,200°C),
residence times on the order of 0.1 sec, and
low excess air conditions. Because this zone
occurs at the front end of the device, it creates
new reaction intermediates by several low-
energy, unimolecular reaction pathways such
as hydrogen chloride elimination and car-
bon–halogen bond rupture that react further
in the downstream zones.

Zone 2, the high-temperature, flame
zone. This zone is characterized by tempera-
tures of 1,000–1,800°C, at which essentially
every organic compound will undergo com-
plete conversion to its most thermodynami-
cally stable end products, namely, carbon
dioxide, water, hydrochloric acid, and nitric
oxide. Under local pyrolysis conditions, soot
is the dominant product. The flame zone gen-
erates large quantities of vaporized metals and
chlorine that are very important reactants in
subsequent zones. Observed organic pollu-
tants are likely due to flow paths that pass

through the periphery of the flame or flow
eddies of poor fuel/air mixing (Cundy et al.
1989). These flow paths represent destruction
“failure modes” of the flame and generate
pockets that are more properly described as
high-temperature thermal zones—that is,
zone 3.

Zone 3, the postflame thermal zone. This
is a chemistry-rich zone where various types of
radical–molecule reactions occur. It is charac-
terized by temperatures of approximately
600–1,100°C, residence times of a few sec-
onds, and both oxygen-rich and oxygen-
depleted regions. Experimental and modeling
studies indicate that most pollutant formation
in this zone occurs in oxygen-depleted pockets
of poor waste–air mixing (Chang DPY et al.,
unpublished data; Cundy et al. 1989; Russell
et al. 1989). Within this zone, most of the
PAHs, higher-molecular-weight CHCs,
brominated hydrocarbons (BHCs), and mixed
bromo/chlorocarbons (XHCs) are formed by
molecular growth pathways. This zone may
also be where metals vaporized in the flame
zone are condensed to ultrafine PM.

Zone 4, the gas-quench, cool zone. This
zone exists downstream of the flame and post-
flame zones and is characterized by either grad-
ual or rapid quenching of the gas temperature.
Residence times are long, > 10 sec, and oxygen
concentrations vary from oxygen-depleted
zones, due to combustion in upstream zones,
to oxygen-rich zones if air in-leakage occurs.
Partially oxidized products such as formalde-
hyde, chloroformaldehyde, and phosgene form
by radical–oxygen association reactions
(Russell et al. 1989). Nitrated products form
via radical–molecule addition reactions involv-
ing NOx generated in the flame zone
(Schuetzle and Perez 1983). Hydrocarbons and
chlorocarbons may also be partially oxidized in
this zone, resulting in emissions including

oxy-PAHs and oxychloro-PAHs (Rubey WA
et al., unpublished data).

Zone 5, the surface-catalysis, cool zone.
This zone is fundamentally different from the
other four zones in that one must now con-
sider the effects of surfaces at temperatures
between 200 and 600°C. Reaction times for
gas–surface reactions are a few seconds for
entrained particulate or hours for deposited
particles. PCDD/Fs have been shown to be
formed in zone 5 (Altwicker et al. 1992;
Gullett et al. 1994; Lomnicki and Dellinger
2003a, 2003b). However, many more pollu-
tants potentially form as a result of surface
catalysis via pathways including CHCs,
BHCs, and XHCs; polybrominated dibenzo-
p-dioxins and dibenzofurans (PBDD/Fs) and
PXDD/Fs; partially oxidized hydrocarbons
and CHCs (i.e., carbonyls, alcohols, organic
acids, epoxides); and nitro-PAHs, oxy-PAHs,
and oxychloro-PAHs (Addink et al. 1995;
Lomnicki and Dellinger 2003a, 2003b;
Wehrmeier et al. 1998). Most of the reactions
necessary to form these products require a
transition metal catalyst (Lomnicki and
Dellinger 2003a, 2003b; Pieters et al. 1984).
We now suspect that the zone 2 and 3 reac-
tions that form nanoparticles of soot/fly ash
also transform metals into catalytically active
forms and catalyze the formation of new toxic
by-products in zone 5. Once formed in zone
5, the pollutants are emitted into the atmos-
phere because temperatures are too low to
result in their destruction.

Incinerators and accidental fires contain
all these zones. Thermal destruction devices
contain only zones 3, 4, and 5. Thermal des-
orbers consist of low-temperature compo-
nents of zone 3 as well as zones 4 and 5.
Catalytic oxidizers consist of zones 4 and 5
only. The omission of zone 2 in most ways
increases the probability of pollutant emis-
sions by allowing all of the waste to react in
zones 3–5, rather than destroying a large por-
tion of it in the flame zone. Unfortunately,
nonincineration, thermal technologies, and
fires are not subject to the same strict testing
and regulatory scheme as are incinerators.
Consequently, most emissions of toxic com-
bustion by-products from these sources
remain uncontrolled.

The nature of emissions: precursors and
thermal reactions. We must be concerned with
not only the level of emissions but also their
toxicity and bioavailability as determined by
the form in which they are emitted. However,
the problem is not intractable, for three rea-
sons: a) Only a limited number of products
form from the direct oxidation or pyrolysis of a
given compound; b) in addition to by-products
from specific precursors, full-scale emissions
characterizations and pilot-scale and laboratory
studies have shown that there are certain
“ubiquitous” by-products that form regardless
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Figure 1. Combustor reaction zones. Zone 1, preflame, fuel zone; zone 2, high-temperature, flame zone;
zone 3, postflame, thermal zone; zone 4, gas-quench, cool zone; zone 5, surface-catalysis, cool zone.
PBDD/Fs, polybrominated dibenzo-p-dioxins and dibenzofurans. Reaction products from upstream zones
pass through downstream zones and undergo chemical modifications, resulting in formation of new pollu-
tants. Zone 2 controls formation of many “traditional” pollutants (e.g., carbon monoxide, sulfur oxides, and
nitrogen oxides). Zones 3 and 4 control formation of gas-phase organic pollutants. Zone 5 is a major
source of PCDD/Fs and is increasingly recognized as a source of other pollutants previously thought to
originate in zones 1–4. 
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of the waste being burned; and c) the condi-
tions under which pollutant-forming reactions
occur are well defined within the zone theory
of pollutant formation.

These principles suggest that characteriza-
tion of toxic combustion by-products may be
studied in a systematic scientific manner. In
addition to PAHs that are formed in virtually
every combustion source, we now believe that
the principal classes of pollutants from the
combustion/thermal degradation of haz-
ardous wastes are a) fine and ultrafine PM,
b) CHCs/BHCs, and c) persistent radicals.

Fine and ultrafine PM. Ultrafine PM, or
nanoparticles, is formed largely by combustion
sources as primary PM emissions or as sec-
ondary particles formed by atmospheric chemi-
cal reactions of combustion emissions of sulfur
and nitrogen oxides (Donaldson et al. 1998).
Nanoparticles are not efficiently captured by
air pollution control devices, are transported
over long distances, and penetrate deep into
the respiratory system, all of which enhance the
potential negative health impacts (D’Alesio
et al. 1999; Kauppinen and Pakkanen 1990).

Metals are vaporized in the flame zone and
subsequently nucleate to form small metal
nanoparticles or condense on the surfaces of
other nanoparticles in transit to the postflame
(thermal reaction) zone (Figures 1, 2). Under
pyrolytic or oxidative pyrolysis conditions at
temperatures above approximately 600°C
(zone 2), the metal seed nuclei promote reac-
tions with gas-phase organic species to form a
carbonaceous layer, resulting in nanoparticle
growth (zones 2 and 3). Below approximately
600°C, under primarily oxidative and oxida-
tive pyrolysis (thermal reactions in the pres-
ence of trace quantities of oxygen) conditions,
the metal nuclei or surface-condensed metals
initiate formation of new gas-phase and
PM-associated pollutants (zones 3–5).

Elemental carbon (mostly soot) and
organic carbon (the myriad of organic chemi-
cals) account for more than half of these parti-
cles. Although approximately 80% of the
organic carbon is extractable, only 12% is
chemically resolved (Rogge et al. 1993).
PAHs, oxy-PAHs, alkanes, organic acids, and
macromolecular species similar to humic acid
make up most of the identified chemicals.
These airborne particles also contain percent
(e.g., iron, potassium, silicon) and part-per-
million (e.g., copper, nickel, zinc) concentra-
tions of transition, alkali, and other toxic
metals. Redox-active metals (e.g., iron and
copper) and organics (e.g., PAHs, oxy-PAHs,
and semiquinones) have been implicated in
the biological activity of airborne fine and
ultrafine PM (Carter et al. 1997; Costa and
Dreher 1997; Kennedy et al. 1998; Smith
et al. 2000). Unfortunately, the organic frac-
tion remains largely uncharacterized, and there
are few to no data on speciation of metals and

the presence of metal–organic complexes that
undoubtedly exist in these particles.

Emissions of CHCs and BHCs. The com-
bustion and thermal reactions of CHCs are of
particular interest because a) they constitute
most of the toxic components of hazardous
wastes, b) they are often quite refractory, and
c) they form other highly toxic aliphatic
and olefinic CHCs, chlorinated PAHs, and
PCDD/Fs.

Trichloroethylene produces a wide range of
by-products, including hexachlorobenzene,
chlorinated PAHs, and the perchlorinated ana-
logue of the highly carcinogenic butadiene
(Avakian et al. 2002). CHCs also form as by-
products in zone 5 by surface-mediated reac-
tions. This finding, along with the resistance of
CHCs to oxidation, suggests that the forma-
tion of PAHs and chlorinated PAHs (ClPAHs)
may be more facile in halocarbon combustion
systems than in hydrocarbon systems.

Numerous research studies have definitively
demonstrated that PCDD/Fs are formed in
almost any combustion or thermal device if
there are sources of carbon and chlorine along
with a transition metal to catalyze chlorination
and condensation reactions (Dellinger and
Taylor 1998; Froese and Hutzinger O 1996).
Three general pathways of formation have been
proposed: a) de novo formation (200–500°C),
in which carbon in soot or fly ash acts as
reagent to form PCDD/Fs by chlorination/
oxidation of “dioxin-like” structures that inher-
ently exist in a carbon matrix (Altwicker 1996;
Hell et al. 1997; Huang and Buekens 1996;
Stieglitz 1998); b) transition-metal, surface-
catalyzed formation (200–500°C) from
PCDD/F precursors such as chlorinated phe-
nols and chlorinated benzenes (Altwicker 1996;
Froese and Hutzinger O 1996; Ghorishi and
Altwicker 1996; Lomnicki and Dellinger

2003a, 2003b); and c) gas-phase, radical–
molecule reactions ( > 600°C) of chlorinated
phenols, chlorinated benzenes, and polychlori-
nated biphenyls (Lenoir et al. 1998; Louw and
Ahonkhai 2002). Field studies suggest that gas-
phase pathways are responsible for about 30%
of total PCDD/F emissions, with the remain-
der due to surface-mediated pathways. Any
source containing a hydrocarbon, a transition
metal, and a source of chlorine (organic or inor-
ganic) will form PCDD/Fs if the temperature is
ever raised above 200°C (Altwicker 1996;
Froese and Hutzinger M 1996; Ghorishi and
Altwicker 1996; Lomnicki and Dellinger
2003a, 2003b).

There is a growing recognition that
BHCs, including PBDD/Fs, are formed and
emitted during the thermal treatment of
brominated flame retardants in fabrics and
plastics and electronic materials (E-materials
and E-wastes), frequent contaminants at
Superfund sites.

Until recently, BHCs have received little
attention primarily because of difficulty of
analysis, lack of available analytical standards,
and a paucity of health effects data. However,
recent findings suggest that brominated flame
retardants as well as PBDD/Fs are highly toxic
(Lenoir et al. 2001). Computer motherboards
contain an incredible amount (~50% per unit)
of bromine (Sakai et al. 2001). Analysis of the
effluent from an E-waste incinerator reveals
that the effluent contains 4.6–7.6 mg of cop-
per per dry standard cubic meter (dscm). This
is significant because it is well established that
copper catalyzes the formation of PCDD/Fs
from CHCs in combustion systems, and the
same catalytic behavior is expected from
BHCs. Recent experimental studies have
shown that BHCs, PBDD/Fs, XHCs, and
PXDD/Fs are formed from combustion of
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Figure 2. Nanoparticle formation/growth and mediation of pollutant-forming reactions in combustion sys-
tems. The combustor reaction zones described in Figure 1 effect particle formation as well as gas-phase
pollutant formation. Metals and other refractory compounds are vaporized in the flame zone. They can
recondense as cluster or seed nuclei in the postflame zone, where they catalyze further particle growth
and pollutant formation in the cool zones.
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E-materials (Lemieux and Stewart 2004). It is
clear that our understanding of the environ-
mental hazards of emissions of XHCs is only
in its infancy, and further progress is hindered
by lack of understanding of the basic combus-
tion chemistry and availability of analytical
standards for toxicologic, chemical, and
combustion evaluation.

Emissions of persistent free radicals.
Reports of persistent radicals in coals, chars,
and soots date back to the 1950s (Ingram
et al. 1954; Lyons and Spence 1960; Lyons
et al. 1958; Uebersfeld et al. 1954). Although
a link between free radicals in these samples
and health impacts was suspected, their poten-
tial health impacts were not recognized
because they were thought to be “inaccessible
to cells and too stable to play any part in car-
cinogenesis” until the publication of a series of
papers by Pryor and colleagues demonstrating
the viability of catalytic cycles involving semi-
quinone radicals (Pryor and Squadrito 1995;
Pryor et al. 1976; Squadrito et al. 2001).

However, we have recently found that per-
sistent free radicals are present in combustion-
generated fine and ultrafine PM and that these
radicals induce DNA damage (Dellinger et al.
2001). Using electron paramagnetic resonance,
we have found that combustion of 10 different
fuels and CHCs produced semiquinone-type
radicals that are stabilized on the particle sur-
faces (Dellinger et al. 2001; Squadrito et al.
2001). Semiquinone radicals are known to
undergo redox cycling to produce biologically
damaging superoxide and hydroxyl radicals. 

Because the principal source of airborne
fine PM is combustion, and these sources
generate free radicals, we examined samples of
PM2.5 from six cities and found large quan-
tities of radicals with characteristics similar
to semiquinones (Dellinger et al. 2001).
Aqueous extracts of combustion-generated

PM and PM2.5 samples induced damage to
DNA in human lung epithelial cells and
myeloid leukemia cells. PM2.5-mediated
DNA damage was abolished by superoxide
dismutase, catalase, and desferoxamine, impli-
cating the superoxide radical, hydrogen per-
oxide, and the hydroxyl radical in the
reactions inducing DNA damage. Identical
DNA damage was caused by incinerator
bottom ash (Dellinger 2003).

We believe that the source of this damage
is a surface-associated semiquinone-type radi-
cal. Semiquinones are relatively nonreactive
with O2 due to resonance stabilization (Berho
and Lesclaux 1997; Wiater-Protas and Louw
2001). When a semiquinone is adsorbed on a
surface, additional stability may be imparted
to the radical if the adsorption site is an elec-
tron acceptor (Kodomari et al. 1988). The
presence of semiquinone-type radicals on
combustion-generated PM is significant and
suggests a previously unrecognized origin of
the health effects attributed to fine PM.

Health Effects of Toxic
Combustion By-products
Routes of exposure and distribution: size
matters. Combustion of hazardous wastes
results in pollution that exists in a gaseous,
liquid, and/or solid particle state suspended in
air. A crude characterization of suspended
pollutants uses the mean diameter of the
suspended particles and varies from a few
nanometers to several micrometers. The coarse
fraction of suspended airborne pollutants orig-
inates from windblown dust, crushing and
grinding operations, materials handling,
and/or atmospheric abrasion of even larger
particles. The aerodynamic diameter of inhal-
able coarse PM ranges from 2.5 to 10 µm (i.e.,
PM10). Combustion, on the other hand, typi-
cally generates smaller PM < 2.5 µm in diame-
ter (i.e., PM2.5). Finally, ultrafine PM, or
nanoparticles, form both in combustion
sources and in atmospheric processes through
condensation and molecular growth pathways
and are < 100 nm (i.e., PM0.1) in diameter.

Particles are deposited in the respiratory
tract, and deposition is directly proportional
to aerodynamic diameter of the particles
(Figure 3). PM10 deposits mainly in the upper
respiratory tract and may be cleared by
mucociliary actions. PM2.5 and PM0.1 pene-
trate the alveolar regions of the lung, where
the ultrafine PM rapidly penetrates the
epithelium (Oberdorster 2001). Clearance of
fine and ultrafine PM is mediated mainly by
phagocytic activity and particle dissolution
(Wagner and Foster 1996).

The ability of PM0.1 to translocate to the
pulmonary interstitium suggests that these
particles have a significant impact on the
health of other organ systems (Nemmar et al.
2001). Indeed, studies using radiolabeled

2 ,3 ,7 ,8- te t rach lorod ibenzo-p -d iox in
([3H]TCDD) have clearly demonstrated that
inhalation, ingestion, or dermal absorption
results in major tissue deposits of [3H]TCDD
in the liver and fat (Diliberto et al. 1996) and
suggest that multiple routes of exposure occur
and that these exposures lead to multiple
organ and systemic effects.

Ambient air pollution is a complex mix-
ture of volatiles and particulates arising from
various sources, including vehicular exhaust,
flaring of hydrocarbons at refineries, coal
burning at power plants, and thermal treat-
ment of hazardous wastes at Superfund sites.
A larger number of epidemiologic studies
have documented associations between air
pollution, specifically PM2.5 and PM0.1, and
acute health effects (Burnett et al. 2000;
Ostro et al. 1996; Peters et al. 2001; Pope
et al. 1999). However, very little is known
about the health effects associated with expo-
sure to the by-products produced from the
combustion of hazardous wastes. Thus, the
following discussion is primarily based on a
review of recent literature addressing the
effects of air pollution on health effects.

Pulmonary effects. Decreased lung func-
tion. Increases in ambient air pollution result
in increased hospital admissions for numerous
respiratory end points, including decreased
lung function [i.e., reductions in peak flow
and declines in forced expiratory volume in
1 sec (FEV1)], cough, and exacerbations of
pulmonary disease states such as asthma and
chronic obstructive pulmonary disease
(Boezen et al. 1998; Pope 2000; Schwartz
1994; Timonen and Pekkanen 1997; Vedal
et al. 1998). Interestingly, stratifying the
results of some of these studies for sex demon-
strated an increase in asthma attacks in girls
compared with boys (Brunekreef et al. 1997;
Oosterlee et al. 1996; Van Vliet 1997).
However, none of these reports even postu-
lates as to why females may be more suscepti-
ble to air pollution than are males.

Inflammatory responses. Exposure to air-
borne PM has been shown to elicit an acute
inflammatory response (i.e., an influx of
neutrophils and other inflammatory cells in
the airway lumen and release of proinflamma-
tory cytokines) in the lung (Carter et al. 1997;
Fujii et al. 2001; van Eeden 2002). Effects of
air pollution on pulmonary function are
observed in various animal models, including
rats, mice, and dogs (Henderson et al. 1988;
Hiura et al. 1999; Nel et al. 2001; Saldiva
et al. 1992). In a recent study, normal rats
exposed to concentrated ambient air particles
(PM2.5) for 3 consecutive days demonstrated a
dose-dependent increase in pulmonary inflam-
mation, as measured by increased neutrophil
numbers in the bronchoalveolar lavage fluid
(Saldiva et al. 2002). These data were sup-
ported by histopathology demonstrating an
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Figure 3. Distribution of PM in the airways. PM ≥ 10
µm in diameter enter the nose and mouth. The tho-
racic fraction, PM10, passes the larynx and pene-
trates the trachea and bronchial regions of the
lung, distributing mainly at pulmonary bifurcations.
The respirable fraction, PM2.5, and ultrafine PM,
PM0.1, enter the nonciliated alveolar regions and
deposit deep within the lungs.
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acute inflammatory response characterized by
an influx of neutrophils into the central areas
of the pulmonary acinus, hyperplasia of the
alveolar epithelium, and macrophage accumu-
lation in the alveolar spaces.

Immune responses. Data further suggest
that ambient air pollution has the ability to
modulate immune responses due to certain
respiratory viral infections. PM10 exposure
has been shown to interfere with the replica-
tion of respiratory syncytial virus (Kaan and
Hegele 2003) and to lead to a decreased pro-
duction of proinflammatory cytokines
(Vincent et al. 1997), whereas exposure of
rhinovirus-infected epithelial cells to moder-
ate levels of air pollutants led to enhanced
generation and release of proinflammatory
cytokines (Spannhake et al. 2002). Although
conflicting, these data suggest that air pollu-
tion modulates pulmonary inflammation due
to certain viral infections in vivo and may be
important in the exacerbation of respiratory
inflammatory disease states such as asthma
and chronic obstructive pulmonary disease.

Numerous epidemiologic studies have
demonstrated increased mortality associated
with increased levels of PM. On high-pollution
days, the numbers of deaths due to respiratory
viral infections such as pneumonia were dis-
proportionately high (Schwartz 1994). In fact,
hospitalization admissions for preschool-age
children and elderly individuals were elevated
almost 2-fold in communities where PM10
levels were above the 24-hr and annual
National Ambient Air Quality Standards of 65
and 150 µg/m3 (Dockery and Pope 1996).

Several studies support these findings. In
one such study, human alveolar macrophages
(AMs) were isolated and subsequently exposed
to PM. The AMs showed significant decreases
in a number of receptors important for host
defense such as CD11b and CD11c (impor-
tant for phagocytosis of opsonized pathogens)
and CD29 (important in neutrophil recruit-
ment). Within 3 hr of exposure, the ability of
AMs to generate reactive oxygen species
(ROS; important in the killing of microorgan-
isms) was markedly reduced, and within 18
hr, significant declines were observed in the
phagocytic ability of AMs (Becker and
Soukup 1998). More recent studies confirm
that exposure to airborne particles from com-
bustion of residual oil [residual oil fly ash
(ROFA)] may alter AM function. For exam-
ple, ROFA instilled into the trachea of rats
before infecting them with Listeria monocyto-
genes results in an increase in the phagocytic
ability of AMs, decreased bacterial killing, and
increased mortality (Antonini et al. 2002).
These results correlated with a significant
decrease in the production of nitric oxide by
AMs. The demonstrated suppression of host
defense mechanisms against L. monocytogenes
is not specific to ROFA or PM, but has also

been observed on exposure to sulfur-related
air pollution, leading to long-term respiratory
effects and to changes in AM-mediated
particle clearance mechanisms (Kreyling et al.
1999).

Although the above studies agree with
numerous other studies on ROFA and bacter-
ial infectivity (Antonini et al. 2002; Hatch
et al. 1985), they disagree with assessments of
infectivity using other PM samples (Antonini
et al. 2000; Yang et al. 2002). For example,
AM function (i.e., phagocytosis and produc-
tion of ROS) was actually enhanced in the
lungs of animals exposed to crystalline silica
and subsequently infected with L. monocyto-
genes (Antonini et al. 2000). The reasons for
this controversy are unclear; however, it is
anticipated that the various components asso-
ciated with the source of the PM are impor-
tant in the observed effects.

Cumulatively, these data suggest that air
pollution acts as an immunosuppressor, deflat-
ing the normal host response to pathogens and,
in particular, the pulmonary immune response.
Whether this is a result of decreased AM cell
numbers, decreased AM phagocytic abilities,
and/or diminished T-cell responses appears
to depend on the chemical composition of
the exposure.

Diminished lung function growth.
Although effects on pulmonary function are
obvious, long-term effects such as lung func-
tion growth in children are just being realized.
Gauderman et al. (2002) followed a cohort of
1,678 fourth-grade schoolchildren from 12
different southern California communities
over a period of 4 years. Each spring, a team
of Children’s Health Study technicians
obtained seven maximal forced expiratory
maneuvers from each child as a measurement
of pulmonary function. Air pollution in the
12 communities was monitored for the entire
study period. Air-monitoring stations
recorded hourly concentrations of ozone,
PM10, and nitrogen dioxide levels. PM2.5 lev-
els were obtained from 2-week filter samples.
Investigators observed a negative correlation
between pollution levels and pulmonary func-
tion for all pollutants examined. A significant
negative correlation was observed between
FEV1 growth rate and acid vapor (p = 0.03).
Significant negative correlations between
FEV25–75% (the middle 25–75% of the FEV
maneuver) were observed for acid vapor,
nitrogen dioxide, PM2.5, and elemental car-
bon. Despite the large number of publications
in this area, no resounding theory as to how
ambient PM induces pulmonary dysfunction
has surfaced.

Cardiovascular effects. Increased cardio-
vascular events. Epidemiologic studies have
also shown an increase in cardiovascular mor-
bidity and mortality that is associated with
increases in PM. In fact, cardiovascular death

rates were higher than pulmonary death rates
during peak episodes of air pollution (Pope
et al. 1999). Numerous studies conducted
within the United States and other countries,
including Canada and Chile, have reported
statistically significant, positive correlations
between daily human cardiovascular events
and exposure to fine PM in the atmosphere
(Burnett et al. 1995; Dockery et al. 1993;
Ostro et al. 1996).

Unfortunately, the epidemiologic data do
not provide a clear description of the types of
cardiac events observed. In fact, cardiovascular
deaths in most of these studies were lumped
into a single group, coronary heart disease
(CHD), which was associated with increases
in ambient PM concentration (Poloniecki
et al. 1997; Schwartz and Morris 1995).
However, CHD results from myocardial
ischemia, arrhythmias, arthrosclerosis, throm-
bosis, and/or vascular spasm. This represents a
major problem in determining the underlying
cause of cardiovascular mortality associated
with increased PM levels. The temporal asso-
ciation between cardiovascular hospitaliza-
tions/mortality and ambient PM seems to be
relatively short (0–3 days), suggesting that
increased cardiovascular morbidity/mortality is
due to myocardial ischemia (Pekkanen et al.
2002), myocardial infarcts (Peters et al. 2001),
and/or ventricular arrhythmias (Peters et al.
2000), and heart rate variability (Gold et al.
2000; Pope et al. 1999). Short-term exposures
(< 2 hr) have been shown to increase the
occurrence of myocardial infarction in people
at risk of developing CHD (Peters et al.
2001). Numerous animal studies have been
able to replicate most of the observed human
responses to PM. These studies demonstrate
that acute exposure to environmentally rele-
vant PM induces cardiovascular effects,
including changes in heart rates (Gordon et al.
1998; Pope et al. 1999); arrhythmias (Hoek
et al. 2001); electrocardiographic abnormali-
ties (Bloch et al. 1972); cardiomyopathic
changes, including inflammatory infiltrates,
fibrosis, and cardiac myocyte degeneration
(Kodavanti et al. 2003); and progression of
atherosclerotic lesions (Suwa et al. 2002).

Chronic cardiovascular inflammation.
Long-term exposure studies (10 mg/m3 at 6
hr/day and 1 day/week for 16 weeks) in
Wistar Kyoto rats demonstrated that PM
induces both time- and dose-dependent
myocardial injury (Kodavanti et al. 2003).
Histopathology of the cardiac tissue revealed
randomly distributed foci of inflammatory
responses composed of mixed populations of
neutrophils, lymphocytes, and macrophages
and suggests a state of chronic active inflam-
mation in the heart due to PM exposure. The
myocardial injury was characterized by car-
diac myocytes in various stages of degenera-
tion. The degenerating cardiac tissue was
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associated with fibrosis and collagen accumu-
lation of the interventricular septum and
throughout the ventricles. Interestingly, exami-
nation of the pulmonary tissue showed a dose-
and time-dependent accumulation of particle-
laden AMs with no associated peribronchial or
perivascular inflammation or pulmonary fibro-
sis, suggesting that PM directly affects cardio-
vascular tissue. A recent study using dogs
residing in polluted urban areas of southwest-
ern Mexico City demonstrated numerous
myocardial changes, including apoptotic
myocytes and inflammatory infiltrates in the
left and right ventricles and interventricular
septum (Calderon-Garciduenas et al. 2001).
Vascular changes were also noted in the dogs,
including smooth muscle cell hyperplasia,
deposition of PM in the media and adventia,
and microthrombi in the capillaries and small
arteries and veins.

Very little is known about how PM
increases the risk of cardiovascular events. One
hypothesis is that inhaled PM produces an
acute cardiovascular event indirectly through
the induction and perpetuation of inflamma-
tory responses in the lung. The chemokines
and cytokines released during this inflamma-
tory response travel through the blood to the
myocardium, where they are known to cause
myocardial dysfunction, including myocardial
infarction, atherosclerosis, and decreased con-
tractility (Abe et al. 1993; DeMeules et al.
1992; Mann and Young 1994). Indeed, a sys-
temic inflammatory response induced by PM
has been demonstrated (van Eeden 2002). This
systemic response elicited cytokine release from
the lung into circulation and proliferative
responses of bone marrow polymorphonuclear
leukocytes. In conjunction with the systemic
inflammation, it was noted that a progression
of atherosclerotic plaques occurred on exposure
to PM in animals susceptible to atherosclerosis.

An alternative hypothesis is that the inhaled
PM is absorbed by the blood and translocated
from the lung to the heart. Provocative data
from a few investigators have begun to demon-
strate the ability of PM0.1 to penetrate deeply
into the lower respiratory tract, where it is capa-
ble of producing significant systemic effects
(Salvi et al. 1999), and to diffuse from the lungs
into the systemic circulation (Nemmar et al.
2001). Evidence for transport of PM from the
lungs into circulation was noted, although not
discussed, in the canine study, which demon-
strated deposition of PM in the arteriolar blood
vessels (Calderon-Garciduenas et al. 2001). PM
transported via the vasculature, directly or indi-
rectly, influences the cardiac myocytes, cardio-
vascular functioning, and/or hemodynamics
through thrombus formation or changes
in rhythm.

Genotoxicity. Genotoxicity results in DNA
mutations that affect a) only the individual’s
DNA (i.e., somatic mutations), b) only the

DNA of the individual’s progeny (i.e.,
germline mutations), or c) the DNA of both
the individual and its progeny. Genotoxic
events are often considered the most detri-
mental; however, cytotoxic events also result
in changes to the physiologic functioning of
the organ/cell, a predisposition to develop dis-
ease, and/or cell death and organ damage.

PM2.5 and combustion-generated PM con-
tain exogenous free radicals that have been
shown to induce DNA damage (Dellinger
et al. 2001) and mutagens (Demarini et al.
1991; Houk et al. 1990; Watts et al. 1992). In
one study, mice chronically exposed to the
ambient air pollution of downtown São Paulo
for 90 days showed a significant increase in the
frequency of micronuclei (an indicator of
DNA damage), which was associated with
increased levels of carbon monoxide, nitrogen
dioxide, and PM10 (Soares et al. 2003). Similar
data were observed on exposure of human
bronchial epithelial cells to 1,3-butadiene soot
(Catallo et al. 2001). Also, both cytotoxic and
genotoxic mutations may lead to cancer
(Vineis and Husgafvel-Pursiainen 2005).
Increased mutagenicity associated with com-
bustion PM emissions appeared to depend on
the incompleteness of combustion and reduced
efficiency of pollution control equipment. 

Investigations conducted in Hamilton
Harbor, Ontario, Canada (an industrial area
with two steel mills), suggest that PM from air
pollution and combustion emissions is the
principal factor responsible for eliciting genetic
mutations (Somers et al. 2004). In particular,
offspring of mice exposed to industrial com-
bustion from Hamilton Harbor demonstrated
an increased incidence (i.e., 1.5- to 2-fold
higher expanded simple tandem repeat muta-
tion rates than animals exposed to ambient air)
of DNA mutation rates that were paternally
derived. Intriguingly, these data are the first to
implicate PM in the induction of mutations
heritable by the subsequent generations
(Somers et al. 2004) and imply that inhaled
PM or their metabolized products are trans-
ported to germ cells (Samet and Pope 2003).

Reproductive effects. Exposure to environ-
mental pollutants has also been linked to
adverse reproductive health. Some of the
effects observed include developmental
changes in the male reproductive tract, includ-
ing testicular abnormalities, whereas other
effects include reduced fecundity (i.e., reduced
sperm quality and count, levels of testosterone,
and embryo implantation) (Carlsen et al.
1992; Dallinga et al. 2002; Pflieger-Bruss and
Schill 2000; Swan et al. 2000). Studies using
organochlorines, which are found in the diet
of Inuit tribes from the Arctic (Dewailly et al.
1993), have demonstrated decreased motility
and diminished viability of sperm within 2 hr
of exposure. If exposure occurred during
in vitro fertilization, the investigators observed

diminished sperm penetration of the oocyte
and slower development to blastocyst rates
(Campagna et al. 2002).

Likewise, decreases in female fertility have
been observed on exposure to environmental
air pollution (Mohallem et al. 2005). Female
mice exposed to ambient air for 4 months dis-
played higher incidences of implantation fail-
ure and decreases in live-born pups. These
differences in fertility were significant if expo-
sures to ambient air pollution began at an early
age (i.e., 10 days after birth). Cumulatively,
these studies suggest that pollutants affect
implantation and reduce fertility by damaging
the germline cells.

Intrinsic properties of the host. The health
impact due to various environmental exposures
is highly variable and depends on multiple
parameters both intrinsic and extrinsic to the
individual. For example, season and climate
have been shown to have a potential role in the
health impacts associated with ozone (Guo
et al. 1999; Lee et al. 2003). It is also plausible
that certain populations are more susceptible to
adverse health effects on exposure such as the
elderly, the developing fetus, or those with pre-
existing disease states. Consequently, several
investigators are focusing on the impact of
exposure in groups of specific ages or with spe-
cific preexisting diseases (Zanobetti and
Schwartz 2002; Zanobetti et al. 2000).

It is also clear that genotypic polymor-
phisms exist among individuals within popu-
lations and that genetic background is an
important susceptibility factor for adverse
health effects on exposure to emissions. Some
of the genes implicated in adverse health
effects on exposure to ozone and sulfate-asso-
ciated PM are toll-like receptor 4 (Kleeberger
et al. 2000), proinflamatory cytokines
(Ohtsuka et al. 2000), and tumor necrosis
factor-α (Yang et al. 2005). Linkage analysis
data are strongly supported by experimental
data demonstrating a role for these candidate
genes in ozone and PM susceptibility (Cho
et al. 2005; Kleeberger et al. 2000). In partic-
ular, a recent study demonstrated that vari-
ability in genes encoding enzymes that are
members of the xenobiotic defense pathways
determines lung cancer risk from indoor coal
combustion emissions (Lan et al. 2000). Null
genotypes for glutathione S-transferase M1
were associated with increased risk of lung
cancer (2.3-fold increase).

Outlook

Understanding the relationships between the
origins, mechanisms of formation, nature of
emissions, biological availability, and biologi-
cal activity of toxic combustion by-products
will require well-coordinated interdisciplinary
research by biomedical, biological, chemical,
and engineering researchers. Furthermore,
establishing the nature of this link will require
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each group of researchers to go beyond their
traditionally narrow veins of research and to
integrate their understanding into a new field
of research that could be referred to as health
effects engineering science.

Inhalation of airborne fine and ultrafine
PM has been identified as a major route of
exposure to toxic combustion by-products;
research should address this poorly under-
stood area. From a combustion and environ-
mental chemistry perspective, key research
issues include the following:
• How are combustion-generated fine PM

and ultrafine PM formed?
• How do their chemical properties differ

from larger PM?
• What is the nature of association of chemi-

cals with these particles?
• How is the chemical and biological reactiv-

ity of these chemicals changed by associa-
tion with the particles?

• What is the role of PM-associated persistent
free radicals in the environmental impacts of
fine and ultrafine PM?

From a health effects perspective, key
research issues associated with combustion-
generated fine and ultrafine PM include the
following:
• What is the role of PM on cell/organ func-

tioning at initial sites of exposure?
• What is the bioavailability of these particles

to other tissues?
• How are these particles translocated to these

secondary sites, and do their chemical prop-
erties change en route?

• How does acute/chronic exposure lead to
adverse organ pathophysiology? Is develop-
mental timing of exposure important?

• What effect does exposure have on predis-
posing to disease states or on disease pro-
gression?

•Most important, what are the specific cellu-
lar and molecular mechanisms associated
with airborne exposures?
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